JEE Journal of Ecological Engineering

Journal of Ecological Engineering 2023 ISSN 2299–8993, License CC-BY 4.0 Received: 2023.06.28 Accepted: 2023.07.29 Published:2024.01.01

Developing adaptive cost model for complexes construction projects in Iraq

Ayyed Ibrahim Abed 1, Sepanta Naimi2

¹ Altinbas University, Civil Engineering Department Istanbul Turkey

² Altinbas University, Civil Engineering Department Istanbul Turkey

* Corresponding author email: ayeddayed@gmail.com

ABSTRACT

The complexity of projects, which is still a young field of study, has a lot of challenges for modern problems that more traditional scientific viewpoints have had difficulty addressing. In addition, as the variety of cost components increases, the complexity of the estimating technique grows, making it more challenging for users who directly perform cost estimation to apply the latest findings of academic research to real-world construction projects. for that, when making decisions on how to achieve a challenging goal in the midst of uncertainty, an adaptive management plan is necessary. The present thesis identifies the effective parameters for adaptive cost estimation, including the influence factors and factors that affect the building cost. then, apply this method with BIM model. The author of this thesis was successful in creating 31 variables for challenging assignments, and then evaluated these elements using the entropy approach. The entropy technique was used to each individual cost component to identify the elements that influence project costs. The results of the entropy method were used to assess the importance of these characteristics.

Keywords:	entropy	method,	adaptive	concept,	complex	project,	effective	factors

INTRODUCTION

the variety of cost components increases, the complexity of the estimating technique grows, making it more challenging for users who directly perform cost estimation to apply the latest findings of academic research to real-world construction projects. Each construction project needs accurate cost estimates[1]. It's a measure of how much time and money will be spent on completing the project. Because to improvements in cost estimate, project management has emerged as a vital skill for finishing projects on time and under budget, respectively[2]. To achieve this, the project manager need to strike a balance between the project's working progress and its budget. This information should be used to describe what the most effective strategy is for assessing the cost of monitoring and diagnosis. Recently, the project managers used a Building Information Demonstrating (BIM) as a computational method to enhance their project control. Building Information Demonstrating (BIM) is being industrialized in almost altogether construction sectors in the Czech Republic. For Cost Organization, referred to as BIM 5D, this transports many opportunities then challenges associated by the need of local workflows alteration in accordance to information modeling wants [3]. Using BIM (Building Information Modelling) is a cutting-edge method that can be used to every facet of construction. The information model is updated as the construction project progresses, and ideally includes all data pertaining to model parts. BIM 5D is a routine progression toward more extensive information modeling for cost control [4]. The information gathered and disseminated by the project team throughout the procedure's development is mapped out in great detail in the procedure map [5]. Due to BIM's rising profile, several studies have been conducted on the topic's potential benefits in the building industry, and BIMbased construction management and cost estimation systems have been developed and made widely accessible to the industry [6]. Consequences of risk variables have been proven by the research, too. Scheme delays, cost overruns, and unsuccessful presentations

are just a few examples of the kind of risks that might work against a project's success [7]. Using construction cost estimates, this study aims to examine the accuracy of three approximation approaches (reversion analysis (RA), neural net (NN), and support course machine techniques (SVM). Using a database of past prices, he compared the NN model's approximation results to those of the RA and SVM models and found that the NN model was more accurate[8]. Since then, we've come to the conclusion that the NN model is the most effective way to estimate the price tag on proposed school construction projects[9]. The cost of various construction projects at universities was estimated using a combination of RA, NN, and SVM in this course of study. Ninety-seven containers were utilized for research and development and authentication, while the remaining twenty bags were employed for quality assurance testing. There was a strong correlation between the estimated and real costs provided by all three models[10].

Related works

In order to keep construction costs down without losing durability, affordability housing must rely on accurate cost estimates and the use of eco-friendly building techniques. Two-bedroom, two-bathroom house plans have remained popular. Structural and non-structural components make about half of the entire residential building. In order to reduce the overall cost of construction, the research substituted fly ash for glue at the percentages of 30%, 40%, and 50%. Compressive, split, and flexural tests, among others, are designed to measure forte [11]. Cost estimating and costing are crucial for all engineering projects. The whole effort's estimated costs include everything from materials to transportation to wages to support staff to equipment to materials to overhead to profits for the contractor. Overall, the estimating and costing processes in Bangladesh are carried out manually, and as a result of the sloppy method in which they are carried out, many errors persist in the costing phase, making accurate forecasting impossible [12]. The analysis is complete by using the

software Statistical Set for Social Disciplines Software Version 20. The education is helping to identifying lifethreatening factors destined for timing by way of healthy costing overruns formerly, by too finding explanations through recommending which issues are considered to controlling [13]. The building industry is unique of the main sectors that deliver important ingredients for the development of country's economy. The numerous factors are recognized for this drive and these dangerous factors are formerly categorized into proprietor, contractor, consultant, physical, design, labor, gear and external issues [14]. About fifty six responses are received for the analysis purpose. SPSS software is applied to do the analysis. The survey is concentrated on the frequency of incidence of this issues and what is the severity of this factors in the five opinion scale [15]. The part of life cycle costing (LCC) in the preparatory and application phase of housing projects. An innovative technique of evaluating the life cycle of buildings is labelled in the object[16]. This technique was tested in selected residential schemes realized by Skanska in the Czech Republic. The LCC control tool has remained designed to perfect life cycle prices of individual alternatives of construction projects with different contribution parameters [17]. Cost of reduction is achieved by selection of more efficient material or by an improved design. Construction of low cost housing by using the low cost construction materials increases the access to buildings by low income group peoples. Advantages of low cost building materials are pollution prevention, Reducing Energy Consumption and use of Natural materials, Use of Local material, Energy Efficiency, Use of non-toxic building materials, Longitivity, durability and maintenance of building material, Recyclability and reusability of building material and Biodegrability. The reviews on various low cost building designs and management are presented in this paper [18].

FACTORS AFFECTING BUILDING PROJECT COSTS

Adaptive Scheme Management is unable to survive on its own. It is frequently the only form of portfolio management that is consistently effective in governments, but Gartner cautions that without combining Adaptive Scheme Management with Strategic Collection Management, governments will lack the top-down, strategy-ambitious management necessary to guarantee optimal performance[19]. Governments frequently utilize a number of tools to handle different parts of an endeavor, but they frequently lack the knowledge necessary to merge the data obtained by separate aptitude systems. The aforementioned inability is exacerbated by the difficulty of effectively evaluating performance and putting required modifications into place due to inconsistent metrics across work types[20]. Designing, enhancing, and enabling a system to test data from industrial processes was done using integrated techniques with the aim of identifying manufacturing problems as they happen in real time[21]. The essential parameters are found in the next section. Finding the traits that truly impact construction project costs is, in fact, one of the most important challenges in building the neural network model. These characteristics were carefully sought for using a variety of methods due to the significance of their existence in Iraqi construction projects[22].
 Table 1: Organizational complexity factors

rubie II organizational complexity factors					
FA1	Organizational				
	complexity.				
SFA1	Technically				
	complex role that requires				
	locally available special				
	skills.				
SFA2	Technically				
	complex role due to the				
	sophistication of the				
	equipment or method.				
SFA3	Technically				
	complex role that requires				
	special skill, knowledge,				
	and equipment.				
SFA4	Role that has no				
	known procedure.				

SFA5	Physically
	difficult role that requires
	the use of complex
	equipment.
SFA6	Conducting or
	managing a role for the
	first time.
SFA7	Physically
	difficult role that requires
	simple or no equipment.
	simple of no equipment.

Table 2: Uncertainty Factors

FA2	Uncertainty.				
SFA8	Unpredictable				
	work in a defined new				
	structure.				
SFA9	Unpredictable				
	subsurface.				
SFA10	The effect of				
	weather or climatic				
	conditions.				
SFA11	Undefined				
	structure or poor				
	buildability assessment				
	(e.g. refurbishment				
	works of old buildings).				

Table 3: Inherent Complexity factors

Tuble et linte	Tent Complexity factors
FA3	Inherent
	complexity.
SFA12	High degree of
	overlap of construction
	phases.
SFA13	High degree of
	interrelationship between
	activities in the different
	overlapping parts.
SFA14	High
	interdependencies
	between the roles of
	various trades in a task.
SFA15	High degree of
	overlap of design and
	construction.

Table 4: Project Monitoring and control

factors						
FA4	project					
	monitoring and control.					

SFA16	Lack of working
	drawings.
SFA17	Lack of
	uniformity due to
	continuous change in
	material or other
	resource.
SFA18	Poor channels of
	communication.
SFA19	Lack of
	uniformity due to lack of
	working space and or
	access.
SFA20	Lack or
	uniformity due to
	mechanical or other
	resource breakdown.
SFA21	Lack of
	experienced local
	workforce.
SFA22	Poor generation
	and use of information.

Table 5: Rigidity of sequence factors

FA5	Rigidity of		
	sequence.		
SFA23	Rigidity of		
	sequence between the		
	various packages within		
	a phase.		
SFA24	Rigidity of		
	sequence between the		
	various operations within		
	a package.		
SFA25	Rigidity of		
	sequence between the		
	various tasks within an		
	operation.		

Table 6: Environmental factors

	Environmental effect.
A6	
	Technical core
FA26	environmental layer
	underwater construction
FA27	layers
	chemical layers
FA28	component
	social environmental
FA29	influence

	cultural environmental
FA30	influence
	legal environmental layer
FA31	

Entropy Weight method

A common weighing approach in decisionmaking that assesses value dispersion is the entropy weight methodology, or EWM for short. The degree of differentiation increases with the degree of dispersion, suggesting that more information may be extracted from the data. The index should be given more weight, and vice versa, instead[23]. The entropy weights methodology, sometimes referred to as EWM, is a method of information weighing that is frequently applied throughout the decision-making process. Indepth assessment studies using a variety of evaluation markers have frequently used it[24]. The relative importance of a number of different variables is assessed in these types of analysis depending on their dispersion. The index will have a higher impact on the overall evaluation if the entropy value is low since this will cause the index's dispersion to be high. It should be signed using a heavier pen because of this.

Results and discussion

Although complexity is a wide topic that may be applicable to any industry, the building industry is currently lacking in published content in this area. Complexity of projests, which is still a young field of study, has a lot of potential for addressing modern problems that more traditional scientific viewpoints have had difficulty addressing. Given this, it is logical to investigate other industries that use complexity science to determine if there are any lessons that can be applied to the construction sector. History demonstrates that the construction industry has a poor track record of project performance in terms of quality, health and safety, and even budget and schedule overruns. A common theory regarding the cause of the subpar performance is the complexity of the design and construction processes. Early project complexity measurement may aid managers

in developing a deeper understanding of the task, which in turn may enable them to more effectively manage the difficulties that come with complicated projects. The conclusions of the Delphi research and the entropy weight technique can both be extrapolated from the table, which also shows that all of the elements have a significant impact. Prioritizing indicators evaluated on Likerttype scales is effectively accomplished by the study of the relative relevance index. This is so that the majority of pertinent criteria may be identified in the participants' responses. This makes it a great tool for sorting indicators according to importance. The criteria may be ordered and the relative weight of each component could be ascertained by an analysis of the relative index. The tables that can be seen below for each category present the results of the relative index study. By selecting the relevant link, one may view these tables. These rankings led to a high grade being assigned to risks in the assessment of construction project cost overruns based on the effects they caused.

Table 7:	Entropy	weight	of con	aplex	project
		factors			

	very	hig	med	lo	very	no
	high	h	ium	W	low	eff
	effec	eff	effe	eff	effe	ect
	t	ect	ct	ect	ct	
F	0.14	0.2	0.15	0.1	0.17	0.1
А	6	33	3	58	5	35
1						
F	0.29	0.1	0.00	0.1	0.11	0.3
Α	3	37	4	42	3	11
2						
F	0.26	0.0	0.00	0.1	0.44	0.1
Α	1	63	8	17	7	04
3						
F	0.16	0.1	0.48	0.0	0.04	0.1
Α	6	24	4	67	8	11
4						
F	0.16	0.1	0.28	0.0	0.36	0.0
Α	5	19	9	67	1	00
5						
F	0.16	0.1	0.04	0.0	0.28	0.3
Α	9	02	0	91	3	14
6						

The most important aspects in an intelligent structure are the number of stores, kind of design, and size of the shadow cast by the building's façade. The Entropy Weight Method (EWM) is a well-liked weighting approach in the evaluation of water quality since it assigns weights based on the discriminatory strength of indicators. Weight needs go up when the discrete degree goes up, and vice versa.

		entropy		m
		method	cdm	
	S	0.69	-	0.
FA1	~		70	
EAO	S	0.74	75	0.
FA2	S	0.72	75	0.
FA3	3	0.72	75	0.
1110	S	0.73	10	0.
FA4	2	0170	74	0.
	S	0.72		0.
FA5			73	
	S	0.73		0.
FA6			71	
F 4 7	S	0.71	70	0.
FA7	C	0.71	73	0
FA8	S	0.71	80	0.
TAO	S	0.81	80	0.
FA9	5	0.01	77	0.
	S	0.71		0.
FA10			78	
	S	0.76		0.
FA11			80	
	S	0.56		0.
FA12			77	
EA 12	S	0.72	76	0.
FA13	S	0.76	76	0.
FA14	3	0.76	77	0.
1 / 117	S	0.78	,,	0.
FA15	5	0.70	75	0.
	S	0.54		0.
FA16			73	
	S	0.59		0.
FA17			72	
-	S	0.55		0.
FA18			71	

Table 8: the entropy method ranking results

a .	0.7.6	1	0
S	0.56		0.
		73	
S	0.63		0.
		70	
S	0.79		0.
~		71	
S	0.71		0.
~		71	
S	0.81		0.
~	0101	88	0.
S	0.91		0.
5	0.71	90	0.
S	0.76	70	0.
5	0.70	87	0.
c	0.73	07	0.
3	0.75	75	0.
<u> </u>	0.65	15	
S	0.65	=0	0.
		73	
S	0.74		0.
		74	
S	0.76		0.
		75	
S	0.69		0.
		76	
S	0.72		0.
		73	
	S S S S S S S S S S S S S S	S 0.63 S 0.79 S 0.71 S 0.71 S 0.81 S 0.91 S 0.76 S 0.73 S 0.65 S 0.74 S 0.76 S 0.76	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

in order to compare the results of MCDM effective factors rank and entropy factor ranks, table 4.2 present the main effective factors.

Table 9: Comparison between the effective factors results between the entropy method and MCDM method

entr		MC					
ору	ank	DM	ank				
effective		effective					
factors		factors					
SF		SF					
A4	.732	A3	.747				
SF		SF					
A9	.807	A8	.804				
SF		SF					
A15	.776	A14	.771				
SF		SF					
A21	.791	A19	.730				
SF		SF					
A24	.913	A24	.899				
SF		SF					
A29	.759	A30	.756				

CONCLUSION

As a part of this thesis, a method for calculating the weights of complex project components using an entropy-weighted approach has been developed. The quantity of information has expanded as a result of the employment of this method, going from a single attribute vector to the full decision matrix. An attribute vector that was used to determine the relative significance of components was the focus of the investigator's attention. The author of this thesis was successful in creating 31 variables for challenging assignments, and then evaluated these elements using adaptive principles. The goal of this study is to provide a unique way for evaluating project performance in southern Iraq by creating a model that may help parties involved in building projects identify obstacles and performance in the early stages of the project. The purpose of this study is to develop a technique that may be applied in the area. The following tactics and methods were applied in order to achieve this goal:

- a) A variety of techniques, including surveys, expert opinions, interviews with members of the construction industry, and exploratory research based on prior studies, were used to assess effective performance characteristics and the extent to which they have an impact on building projects. Five different categories of activities that have an impact on construction projects were chosen as a consequence of the selection process.
- b) Many other variables had to be taken into consideration when creating an entropy model, the first of which was choosing the best software to be utilized in the model's creation. The components that have been utilized for fundamental performance evaluation were chosen to be used to ascertain the level of effect that each type of performance has due to their ease of application and ability to draw conclusions.
- c) Once the system was reviewed, the findings were found to be highly

favorable, and the performance projection was shown to be extremely accurate.

References

- S. NAIMI and M. A. KARIMI, "Pavement Management System Investigation in Case of Afghanistan," *Cumhur. Sci. J.*, no. March, 2019, doi: 10.17776/csj.471334.
- S. Naİmİ and H. Hrİzİ, "Risk Analysis of Slaving Floor in Construction Sites İnşaat Şantiyelerde Kaygan Zeminin Risk Analizi," vol.
 9, pp. 1637–1645, 2019.
- [3] S. Vitasek and J. Žák, "BIM for cost estimation," Adv. Trends Eng. Sci. Technol. III- Proc. 3rd Int. Conf. Eng. Sci. Technol. ESaT 2018, no. September, pp. 657–662, 2019, doi: 10.1201/9780429021596-103.
- [4] S. Vitásek and J. Zak, "Cost estimating and building information modelling (BIM) in road construction," no. June, pp. 403–410, 2018, doi: 10.3311/ccc2018-053.
- [5] H. A. Wasmi and D. Castro-Lacouture, "Potential Impacts of BIM-Based Cost Estimating in Conceptual Building Design: A University Building Renovation Case Study," Constr. Res. Congr. 2016 Old New Constr. Technol. Converg. Hist. San Juan - Proc. 2016 Constr. Res. Congr. CRC 2016, no. May 2016, pp. 408–417, 2016, doi: 10.1061/9780784479827.042.
- [6] H. Liu, M. Lu, and M. Al-Hussein, "BIM-based integrated framework for detailed cost estimation and schedule planning of construction projects," *31st Int. Symp. Autom. Robot. Constr. Mining, ISARC 2014 - Proc.*, no. July, pp. 286–294, 2014, doi: 10.22260/isarc2014/0038.
- [7] H. Eliufoo, "Risk Factors in Cost Estimation: Building Contractors" Experience," Am. J. Civ. Eng. Archit., vol. 6, no. 3, pp. 123–128, 2018, doi: 10.12691/ajcea-6-3-5.
- [8] A. M. Elewe, K. Bin Hasnan, and A. Bin Nawawi, "Hybridized firefly algorithm for multi-objective Radio Frequency Identification (RFID)

Network planning HYBRIDIZED FIREFLY ALGORITHM FOR MULTI-OBJECTIVE RADIO FREQUENCY IDENTIFICATION (RFID) NETWORK PLANNING," no. February, 2017.

- [9] A. M. Elewe *et al.*, "Review of RFID optimal tag coverage algorithms REVIEW OF RFID OPTIMAL TAG COVERAGE ALGORITHMS," no. July, 2016.
- [10] G.-H. Kim, J.-M. Shin, S. Kim, and Y. Shin, "Comparison of School Building Construction Costs Estimation Methods Using Regression Analysis, Neural Network, and Support Vector Machine," *J. Build. Constr. Plan. Res.*, vol. 01, no. 01, pp. 1–7, 2013, doi: 10.4236/jbcpr.2013.11001.
- [11] R. Ravinder and A. Prakash, "Estimation of Residential Building using Low Cost.," no. June, 2018.
- [12] A. B. Ali and M. H. Rahman, "A Study on Estimation and Costing of a Seven Storied Residential Building in Dhaka City," *J. Struct. Eng. its Appl. Anal.*, vol. 2, no. 1, 2, 3, 2019, doi: 10.5281/zenodo.3560646.
- [13] S. D. Sankar, D. K. Shashikanth, and S. Mahender, "Increase in Cost and Delays in Construction," *Int. J. Res. Publ. Rev.*, no. June, pp. 3457–3464, 2022, doi: 10.55248/gengpi.2022.3.5.29.
- [14] N. H. Talib, K. Bin Hasnan, A. Bin Nawawi, H. B. Abdullah, and A. M. Elewe, "Monitoring Large-Scale Rail Transit Systems Based on an Analytic Hierarchy Process/Gradient-Based Cuckoo Search Algorithm (GBCS) Scheme," Urban Rail Transit, vol. 6, no. 2, pp. 132–144, 2020, doi: 10.1007/s40864-020-00126-3.
- [15] N. Of and Y. Under, "ANALYSIS OF DELAY IN EXECUTION OF CONSTRUCTION PROJECTS," *Analysis*, vol. 9, no. 1, pp. 1–6, 2015.
- [16] K. Hasnan *et al.*, "An efficient algorithm for larg-scale RFID network planning," no. May, 2017, doi:

10.1109/ICITECH.2017.8079927.

- [17] E. Hromada, S. Vitasek, J. Holcman, R. S. Heralova, and T. Krulicky, "Residential construction with a focus on evaluation of the life cycle of buildings," *Buildings*, vol. 11, no. 11, pp. 1–20, 2021, doi: 10.3390/buildings11110524.
- [18] K. Jaiganesh, S. Dinesh, and R. Preetha, "a Comprehensive Review on Low Cost Building Systems," *Int. Res. J. Eng. Technol.*, no. December, 2016.
- [19] A. Manewa, M. Siriwardena, and C. Wijekoon, "Life cycle costing in construction: Current trends and emerging directions," *World Constr. Symp.*, no. July, pp. 403–412, 2021, doi: 10.31705/WCS.2021.35.
- [20] S. Pai and A. Shriwas, "Time and Cost Planning of a Housing Construction Project Using Building Information Modelling," *J. Constr. Res.*, vol. 1, no. 2, pp. 18–24, 2020, doi: 10.30564/jcr.v1i2.1155.
- [21] B. Alabi and J. Fapohunda, "Effects of increase in the cost of building materials on the delivery of affordable housing in South Africa," *Sustain.*, vol. 13, no. 4, pp. 1–12, 2021, doi: 10.3390/su13041772.
- [22] S. Ekung, A. Lashinde, and E. Adu, "Critical Risks to Construction Cost Estimation," *J. Eng. Proj. Prod. Manag.*, vol. 11, no. 1, pp. 19–29, 2021, doi: 10.2478/jeppm-2021-0003.
- [23] K. D. Goepel, "Implementing the Analytic Hierarchy Process as a Standard Method for Multi-Criteria Decision Making in Corporate Enterprises – a New AHP Excel Template with Multiple Inputs," pp. 1–10, 2013, doi: 10.13033/isahp.y2013.047.
- [24] M. Zhang, X. Zhang, H. Wang, G. Xiong, and W. Cheng, "Features Fusion Exaction and KELM with Modified Grey Wolf Optimizer for Mixture Control Chart Patterns Recognition," *IEEE Access*, vol. 8, pp. 42469–42480, 2020, doi: 10.1109/ACCESS.2020.2976795.